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AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH
INCOMPLETE INFORMATION

By Miiam Avsr, H. D. Brung, G. M. Ewmwe, W. T. R,
AND EpwARD SILVERMAN

Sandia Corporation, University of Missouri, Northwestern University

Summary. Fori = 1,2, --- , n, let N; independent trials be made of an event
with probability p;, and suppose that the probabilities p; are known to satisfly
the inequalities py = 2 = -+ 2 pa . Let a; denote the number of successes in
the i-th trial, and pf the ratio a;//N:@ = 1, 2, .-+, n). Then the mazimum
likelihood estimates P, - -, fis of the numbers p;, -+, P, may be found in
the following way. I pf = p1 = --- Z pn = 0, then ;s = pi,i=1,2,-,n
If pf < phu for some k(b = 1,2, -+-, = — 1), then f = Prss ; the ratios
»¥ = ay/Ny and p%y1 = 641/Niys are then replaced in the sequence pi,
pi, -+, pn by the single ratio (ax -+ @r41) / (Wi -+ Niys), obtaining an ordered
set of only n — 1 ratios. This procedure is repeated until an ordered set of ratios
is obtained which are monotone non-increasing. Then for each 7, p; is equal to
that one of the final set of ratios to which the original ratio a;/N; contributed.
Tt is seen that this method of caleulating the 1, - -« , i, depends on a grouping
of observations which might very well appeal to an investigator on purely
intuitive grounds. It seems of interest to note that it yields the maximurm likeli-
hood estimates of the desired probabilities.

Particular examples of this situation are found in bio-assay [3] and in the
proximity fuze problem discussed by M. Friedman ([1], Chapter 11).

The last section is devoted to a consistency property of the maximum likelihood
estimators.

1. Introduction, In ordinary sampling one observes directly values of a random
variable, There are, however, certain investigations, of which examples are to be
found in & number of different fields, in which the result of each observation is
not a sample value of the random variable being tested, but only a number,
together with the information that the sample value is less than, or is greater
than, that number. Bio-assay furnishes an example (i3]; for further references
see [3], p. 416; [1}, p. 352). Certain other examples occurring in the biological
sciences have been suggested to the authors. Still another situation of this kind
is mentioned by M. Friedman ([1], Chapter 11). Given & population of proximity
fuzes, one is interested in the distribution of the random variable t, maximum
distance from target at which & proximity fuze will operate. The result of a test
of an individual proximity fuze is the distance of its nearest approach to the
target and the information that it did or did not operate (we assume that the
proximity fuze will not operate before reaching its point of closest approach to
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the target. We do not know whether or not this is in fact true of any actual
proximity fuze; cf. [1], Chapter 11). The result of such an observation is there-
fore not a sample value of the random variable, t, but rather a distance, &, and
the information that the sample value of t corresponding to the particular prox-
imity fuze is less than & (if it did not operate) or &t least f, (if it did operate). ]

Tet F() = Pr{t < t}; F(!) is the distribution function of the random variable
t. Let p(f) = 1 — F(t) = Pr{t = 1}; p(t) represents the probability that the
fuze will operate if its minimum distance from the target is 2. Suppose R fuzes
are tested, and observed to pass within distances &, &, -+, ¢, of the target
{n £ R; several may have the same minimum distance from target); for con-
venience suppose the {#;]7 are arranged in increasing order. The B tests may be
regarded as a set of R independent trials of events having probabilities
p: = p(t)(E = 1, 2, -- -, n) of success (those observed at the same minimum
distance from target having the same & priori probability of operating), if the
term “success” is used to signify that the proximity fuze operated. The problem
is to estimate the probabilities {p:}7 from the results of the R trials.

In a typical bio-assay situation, a large number. of trials is made at each pa-
rameter value ;( = 1, 2, -+, n). In such & situation the ratics, number of
successes divided by number of trials, each determined for a particular pa-
rameter value, will with high probability be in menotone non-increasing order
{assuming 4, £ £ £ -+ = ). The “best” estimates of the probabilities are
then these ratios, and if #(¢) is a non-increasing function assuming these values
at the points {#}7 then F() = 1 — $(f} is an obvious empirieal distribution
function. In other cases, such as that discussed above, one might expect a small
number of trials corresporiding to each parameter value, so that the average
mumbers of successes could not be expected to be in monotone order. It is for
such situations that the maximum likelihood estimators of the probabilities
ip(t:)}1 are determined in this paper. If |5;]1 denotesthe set of maximum likeli-
hood estimates, and if §{(¢) is 2 monotone non-increasing function such thaf
Bt = pli = 1,2, -+, n) then F(f) = 1 — p(f) will be termed an emprrical
distribution funclion.

In bio-assay situations it is often assumed that the random variable in question
(perhaps after an elementary transformation) is normally distributed. Methods
of probit analysis ({1], {2], [3]) have been developed for use with such an assump-
tion. While it is true that an empirical distribution function may be useful in
determining parameters of a normal distribution under such an assumption,
the primary purpese of this paper is to present estimators of the probabilities
{p(t) 1 without reference to any assamption as to the distribution of the random
variable being tested. These estimators are derived in section 2. The calculations
required for their computation are extremely simple and rapid. In-section 3,
the consistency of the estimators is considered. A theorem is proved which states
that the empirical distribution function, F{f) = 1 — 5(¢), converges in proba-
bility to the distribution function F(f) as the number of tests or trials becomes
infinite in an appropriate way.
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2. Maximum likelihood estimators of the probabilities. Let a; 4 b: inde-
pendent trials be made corresponding to the same parameter value, or observa-
tion point, #;, of which a; are successes ( = 1, 2, - -+, n). If p; = p(#:) denotes
the probability of success in & irinl corresponding to the parameter value
ti = 1,2, .-+, n), then the a priori probability of the event that, for each
integer 7, 1 £ ¢ < =, a specified a; of the trials will result in success is

@.1) II = [T o0 = p™.
[T
Since p{t) is non-increasing, the {p;}T are known to satisfy the relations
(2.2) 1z2mezpez - 2p. 20
The maximum likelthood estimates of {p;}7 are those mumbers, {f:}1, which
maximize the probability ] subject to the relations (2.2). (These estimates
also maximize the probability,
a5 + b) aq by

H ( a -,
that for each ¢, 1 £ ¢ £ n, there will be a; successes among the a; -+ b, trials
at the observation ppmt. t:).

In the context of the above discussion the numbers a; and bi(f = 1,2, -, n)
ere non-negative integers. In section 3 they will be so regarded. However, the
discussion of this section requires only that they be non-negative real numbers,
suchthat a; +0: >0 = 1,2, .-, n).

Let B, denote the class of sets of resl numbers {p:]7 satislying the inequalities
(2.2). The problem is to determine & set {{}1 in P, affording a maximum value
to
(2.3) [Iae0 - 9% = max I a¥0 — o)™

il (PilePn =i

LEmMMA 2.1, There is a mazimazing set {Pi}1
This follows immediately from the observation that the product is a con-

tinuous function of its arguments p;, ps, - -, P and hence assumes its maxi-
mum on the closed, bounded set described by inequalities (2.2).

Set
(24) PT = af/(ai + bi) (i = ll 2r ) n).

THEOREM 2.1, If {Pilt s a mazimizing sel, and if P > Pens for some k,
1=k $nthnpt 25> Pepr = pis . Also, pf = pr, ond P Z Pa.

Proor. We prove first that p,; 2 £+ . The basis of the proof is the observation
that the function p“(l - 'p) increases for 0=y < a/{a -+ b) and decreases
fora/la+b)<p 351 Suppose Pr > pk Choose pr = max (pf , fess). Then
P12Pa“"'>Pk1>Pk>pk+12 - Z Pn, while

M1 — P > PR — B
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This means that 1] is increased by replacing 7 by pr (note that max II >0,
contrary to (2.3). Therefore p!f = fi. Similarly fiyn = piu. Hence
Pr = Pr > Pens = Piaa. The proof of the last statement of the theorem is
gimilar.

For integersr, s, with 1 < r £ ¢ < n, define

alr,s) = ga-, Blr, s) = ,:Z,b"
Alr, 8) = alr, 8)/lalr, s} + B(r, ).

Trrorem 2.2. For 1 = £ £ n, we have
P = min max A(r,s) = max min A(r,8)

(2.5)

1grgd igign igign 1Lrgd
= min max A(r,8) = max min A, s).
1grge rgagn igegn 15rss

The original proof, based on Theorem 2.1, is omitted. The reader is referred to
the following paper for a simpler proof.

COROLLARY 2.1, The mazimizing set {5:}1 48 unique. BEach fi(f = 1,2, --+ , n}
is determined uniquely by any of the formulas in Theorem 2.2.

Theorem 2.2 gives explicit formulas for the determination of the {#:}, but
these are not recommended for caleulation, Theorem 2.1 provides a means of
caleulating the maximizing set, {5:]7, as outlined in the suramary, which is
very fast even for moderately large n.

The following interesting inequality was mentioned by a referee:

T — p)ten b 2 s (B — P+ B

Here pr and §: are as defined above, while p;, pz, +- -, P, is any set of numbers
such that 1 Z py 2 P2 2 »++ 2 Pa = 0. Indeed, one has

(o — pla + B) 2 ow (B — pe( + B + 2 (0 — P)ax 4 Ba),

as was shown by two of the authors, independently, in more general contexts,
subsequent to the submission of the manuscript. These inequalities show that the
numbers § are, on the average (in an obvious sense), closer to the numbers
p, respectively than are the numbers oE.

3. The consistency of the estimators. Let F(f) be the distribution function of
the random variable t (see Section 1), The probability that t will assume a value
t or greater is given by p(f) = 1 — F(¢). The method discussed in Section 2 pro-
vides the maximum likelihood estimates, §;, of p(f) at specified parameter
values, or observation points, & = 1, 2, - -+ , n). Let #(t) denote any non-in-
creasing function, 0 = $(t) = 1, assuming the values f; at the points
i = 1,2 -+, n), and F@) = 1 — p(¢) an empirical distribution function
associated with trials at the observation points &z = 1, 2, + -+, n). If the points
ti, -+, t. were to remain fixed and the number of trials at each to inerease in-
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definitely, it would follow from the strong law of large numbers that for
E=1,2 - ,n, pi and 7 converge with probability I to : . In the following
theorem, however, neither » nor the points 4, %, * -+ , », nor hence the proba-
bilities p; need remain fixed. For a fized f,, the number of trials made at # need
not become infinite, nor need any at all be made at & . We shall bave p{ty) near
plfo} with high probability if only enough trials are made at points neer fp, even
if only one trial is made at each point.

The following theorem of Xolmogorov (strong law of large numbers) will be
useful in establishing such & result.

Leamma 3.1. (Kolmogorov) Lef ¥; be a sequence of independent random variables
having expected values E(y;) and variances Vi(j = 1, 2, ---). Let ¢ be an arbi-
trary positive number, and M a positive integer. Then

60 Blop |t~ s s> 1- B[S E+ ga kv

¢ Limn J 45% ;5
(4], p. 203).
TurorEM 3.1, Let ly be a continuily point of the disiribution function F{t). Let
¢, 7 be arbitrary positive numbers. Let ¥, t* be chosen so that ' < f < " and so

that |F(f) — Flto)] < ¢/2fort! £t 51", Then
(3.2) Prijf{t) — Pli)l < e} >1—1n

provided that at least N trials are mode between t and & and at least N trials are
made between &, and t”, where N s chosen so that

= 1 1 2
(33) L7ty <2
Proor. We shall prove first that Pr{f (%) > F{t) — ¢} > 1 — n/20r
(3.4) Priplt) < plte) + ¢} > 1 — 2/2

provided that at least AV trials are made between ¢’ and & . It can be shown simi-
larly that Pr{F{t)) < F() + ¢} > 1 — 3/2, 0r

(8.5) Pr(a(h) < pll) — ¢} > 1 — 3/2,

provided that at least N trials are made between & and ¢”. Inequality (3.2)
follows from (3.4) and (3.5).

In order to establish (3.4), let * = & if {, is an observation point. If not, let
7* denote the first observation point to the left of & . Since F(t) = F(t*), or
Bty < (), it suffices to prove

(3.6) Prip(t*) < plt) + ¢} > 1= 9/2.

Let the observation points be {t:}(¢f = 1, 2,--- , ) withy S b £ -+- = 1.
Let ¢, be the first observation point o the right of #. Let M be the number of
trials at observation points fm, fmir, --+, b = £* By hypothesis, M = N;
that is, Y fmm (@: + b)) 2 N. Order the trials at observation points fm , tmyr, ** * ,
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t, in the order of increasing ¢;, ordering in an arbitrary way those oceurring at

the same observation point. Let 71, T2, -+, Tw, Tupr, -+, Tr, where B
is the total number of trials, denote the trials so ordered. Let {y;} denote the
number of successes in the trial T;(j = 1, 2, - -+, E) so that y; = 1 with proba-

bility p(Z) and y; = 0 with probability 1 — p(Z;), where {; is the observation
point at which the trisl T'; occurs. For j > R, let {y;} be independent random
variables, each assuming the value p{f) with proba.blhty 1.Set s = D 51 V5.
By Tkeorem 2.2,

p(t*) = () = min max A(n,s).
Igrgy ugegn .

Hence

B £ max A(m, 8

ugegn

{tm is the first observation point to the right of ¢'). The symbol A (m, s) represents
the average number of successes in trials starting at ¢» and terminating at ¢, .
Hence as s varies {s = u) these ratios form a subsequence of the sequence
si/k{k = M). This implies that

(3.7 7Y = 5;15 s:/k.

By Lemma 3.1,

o[- o] =

L %ﬁ E(y) .s_—;-}

64 < S 1 <
"";[Z 3/32+4——w,_§vi]-

M

But V; = Var(y;) = p(t:)il — p(t)] = %, & being the observation point at
which the trial T; occurs. Hence by hypothesis {3.3),

R PEIR Ty R

gince M = N.Further,if 1 < j < R, then E(y;) = p(i) < p{lo) + ¢/2;if j > R,
then E(y;) = p(t). Hence

Pr {ggg sifk < plla) -+ €} > 1 — 7/2.

By (3.7) it then follows that
(3.6) Prip(t*) < pll) + ¢} > 1 - n/2.

The proof of Theorem 3.1 is completed as indicated immediately following its
gtatement.
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